
Interfacing MFIX with PETSC and 
HYPRE Linear Solver Libraries 

Jeremy Thornock, U. of Utah
Surya Yamujala, U. of Utah

Gautham Krishnamoorthy, U. of North Dakota
Lauren Clarke, U. of North Dakota

Acknowledgement: This research is being funded by the University Coal Research Program which is administered by DOE‐NETL 
(Award #: DE‐FE0026191) PM: Jason Hissam 



Major Objective

Setup A,x,b

Solve Ax=b

Construct 
Eqns

M
Fi

X 
Al

go
rit

hm



Problem Statement

Setup A,x,b

Solve Ax=b

Construct 
Eqns

M
Fi

X 
Al

go
rit

hm

Incorporate Hypre/PETSc as an inner solver option

Ash cluster, Center for High Performance Computing, U. of Utah



Linear Solver Packages: Hypre and PETSc

• Both PETSc (ANL) and Hypre (LLNL) are 
fairly mature with active development

• Large user bases
• Many examples of good scaling up to 

large numbers of cores for sparse linear 
systems

• Both are C/C++ based codes with Fortran 
interfaces

• Roadmaps for heterogenous architecture  
(GPU, OpenMP, …) 



•Non-disruptive implementation with tech transfer

•Verified implementations of the third-party linear solvers

•Demonstrate parallel scaling on local resources (up to 7K cores) 

•Demonstrate algorithmic scaling (robustness) 

Major Objectives



Team

Project Manager

J. Thornock, U. of Utah PI

Surya Yamujala, Student

G. Krishnamoorthy, UND PI

Lauren Clarke, Student

G. Krishnamoorthy
HYPRE PETSC

• Experience with HYPRE in an 
in-house LES code.

• Symmetric Pressure Poisson 

• Experience with PETSC and 
HYPRE for solving the RTE.

• RTE is non-symmetric

MFIX TEAM (Jordan Musser, Jeff Dietiker)
Jason Hissam



Computational Implementation

Non-disruptive interface to the linear solver options 
Useable

Development Principles

• PETSc and Hypre are easy to build!

• Linking 3p packages handled with modification of environment variables during configure 

• Leverage the existing modules for input file parameters (Bools, Ints, Floats, etc)

• New Fortran modules hold the 3p solver interface

• Logic in solve_lin_eq.f direct the algorithm to the selected solver (eqn dependent) 



Code Example

See: https://bitbucket.org/jthornock/mfix_hypre_integration for code and wiki documentation. 
Email J. Thornock for access. 

solve_lin_eq.f



Code Correctness

• Several cases have been tested to demonstrate correctness by comparing against 
known data or comparing to solution with the native MFiX solver. 

• Tests have been performed on single and multiple cores 

Single Core Multi-core

Lid driven cavity problem with momentum and pressure solves



Code Correctness

• Comparison of the pressure coefficient (Cp) results 
using left-side Block Jacobi preconditioning against 
experimental data

• Overall, higher-order discretization schemes compare 
better with experimental data compared to the lower 
order scheme (FOUP)

• There was little to no difference in results for all 
preconditioning methods that were tested for the 
coarse mesh and the intermediate mesh

-2.

0.

2.

0. 36. 72. 108. 144. 180.

Cp

ϴ (˚)

Norberg exp. (2002)
BJACOBI (left) FOUP
BJACOBI (left) Superbee
BJACOBI (left) van Leer

-2.

0.

2.

0. 36. 72. 108. 144. 180.
Cp

ϴ (˚)

Norberg exp. (2002)
BJACOBI (left) FOUP
BJACOBI (left) Superbee
BJACOBI (left) van Leer

Coarse Mesh (120x80)

Intermediate Mesh (240x160)

Accuracy 



3P Overhead - Hypre

Single Core

• 2-d heat transfer 
problem

• Work measured as total 
number of cells

• Ideal lines are just 
multiples of two from 
the left or right-most 
points

Non-ideal
Deviation



Equation Construction 
solve_lin_eq.f

Utilize hyperUtilities.f

Translate MFIX 
storage to HYPRE  

objects - remapping of 
index space (Matrix 

Setup)

Setup of HYPRE 
solver and 

preconditioner 
objects (Solver 

Setup)

Solve Ax = B (Solve)

Translate HYPRE 
objects back to MFIX 

storage - inverse 
index space mapping 
and memory cleanup = expense concerns

Solver Performance: Setup



MATRIX SOLVER

SOLVE

• Blue shaded regions exhibit non-ideal 
behavior

• Solver setup costs are particularly 
problematic

• Problem persists for multicores 



Total times

Strong Scaling
Matrix

Solver

Solve

• Setup the solver less frequently? Effect on overall 
convergence? 

• Do all solvers have a large setup cost? 
• More work/Core! 

Exploratory Questions/Observation



Comparison with MFiX

• Attempts at an apples-to-apple comparison for several test problems
• Varies problem to problem
• Work/core must be large enough for Hypre to be competitive 
• Lots of knobs - only just a few have been explored up until now 



Differencing Scheme

-2.

0.

2.

0. 36. 72. 108. 144. 180.

Cp

ϴ (˚)

Norberg exp. (2002)
MFiX (Line)
MFiX (Diag)
Interface (SOR - left)
Interface (SOR - right)
Interface (BJACOBI - left)
Interface (BJACOBI - right)

Superbee (480x320)

• Left and Right preconditioning 
agrees well with the data. 

• Finer mesh resolutions highlight 
the difference between the 
solvers

Comparison with MFiX 

0.

100.

200.

300.

400.

0E+00 5E+04 1E+05 2E+05

CP
U

 T
im

e 
(h

)

# Unknowns

MFiX (Line)
MFiX (Diag)
Interface (SOR - left)
Interface (SOR - right)
Interface (BJACOBI - left)
Interface (BJACOBI - right)

• Efficiency of the linear solver is 
also highlighted. 

0

875

1750

2625

3500

F.O.U.P Superbee van Leer

A
vg

. S
ol

ve
r 

it
er

at
io

n
s

MFiX (Line) MFiX (Diag)

Interface (SOR - left) Interface (SOR - right)

Interface (BJACOBI - left) Interface (BJACOBI - right)



Solution Efficiency

• Using flow-over-a-cylinder problem - exploring the stiffness of the linear system using various 
convection schemes. 

• Changing intermediate parameters (wide space) 
• Efficiencies are gained by tuning several adjustable solver parameters (tolerance, tolerances, 

multigrid parameters, etc)



3D Fluidized Bed – Polypropylene

fluidization jet

9 cm 2 cm 9 cm

100 cm

fluidization

Case 4: Fluidized Bed with Polypropylene Particles (3-Dimensional)

Case
Dimensions +

Mesh
Time Step Tolerance Uin Solver Scheme P.C.

4.1
20x100x2 cm3

40x250x10

DT: 10-3

Max: 10-1

Min: 10-6

Outer: 10-1

Solver: 10-3 5 m/s BCGS van Leer
1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)

4.2
20x100x2 cm3

40x250x10

DT: 10-3

Max: 10-1

Min: 10-6

Outer: 10-1

Solver: 10-3 20 m/s BCGS van Leer

1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)

4.3
20x100x2 cm3

40x250x10

DT: 10-3

Max: 10-4

Min: 10-6

Outer: 10-1

Solver: 10-1 5 m/s BCGS van Leer

1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)

Case 5: Fluidized Bed with Polypropylene Particles (2-Dimensional)

Case
Dimensions +

Mesh
Time Step Tolerance Uin Solver Scheme P.C.

5.1
20x100 cm2

56x250

DT: 10-3

Max: 10-3

Min: 10-6

Outer: 10-1

Solver: 10-1 5 m/s BCGS van Leer
1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)

5.2
20x100 cm2

56x250

DT: 10-3

Max: 10-3

Min: 10-6

Outer: 10-1

Solver: 10-3 5 m/s BCGS van Leer

1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)

5.3
20x100 cm2

56x250

DT: 10-3

Max: 10-3

Min: 10-6

Outer: 10-3

Solver: 10-3 5 m/s BCGS van Leer

1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)



Fluidized Bed

0

1

1

2

2

Case 5.1 Case 5.2 Case 5.3

Cp
u

 T
im

e 
R

at
io

MFiX-PETSc (BJACOBI - left)
MFiX-PETSc (BJACOBI - right)

0.

37.5

75.

112.5

150.

Case 5.1 Case 5.2 Case 5.3

A
vg

. S
ol

ve
r 

it
er

at
io

n
s

MFiX (Line)
MFiX-PETSc (BJACOBI - left)
MFiX-PETSc (BJACOBI - right)

CPU Time Ratio
PETSc/MFiX 

Inner 
Iterations



Example: FluidBed1

Increased resolution of original input file by a factor of four. 

1st attempt with native MFiX solve: diverged. :-(

2nd attempt with gmres/smg: converged.       :-)

Native MFiX
Hypre



Summary 

• Several test problems have been explored and tested for correctness (passed), both multicore 
and single core. 

• Performance has been fairly well characterized on a series of single phase problems, 
highlighting the overhead costs of Hyper. 

• Comparisons with MFiX are favorable, but may depend on the scenario and require solver 
parameter tuning, of which there are a few in Hypre, especially the multigrid parameters. 

• Some cases better algorithmic scaling when compared to the use of the native MFiX solver. 



Future Work

• Include more complexity in the problems we are exploring (spouted beds for CLC, etc.) 

• Scale-up the problems to larger core counts

• Look for ways to amortize setup costs

• Other efficiency gains? OpenMP? 

• Discussion with MFiX team: What problems would they like to see? 


